Beneficial Reuse of Excess Soil at Aggregate Pits and Quarries

ONTARIO SOCIETY OF PROFESSIONAL ENGINEERS

April 21, 12:00 - 1:30 PM ET

David Carnegie, P.Eng.

Director, OSPE's Board of Directors

Madeh Piryonesi, PhD

Project Manager, OSPE

Beneficial Reuse of Excess Soil at Aggregate Pits and Quarries

S. Madeh Piryonesi, PhD David Carnegie, M.Sc., MBA, P.Eng. Ontario Society of Professional Engineers

Summary

- Project Scope
- Project Deliverables
- Scientific Report
- Best Management Practice (BMP)
- Reports available at: <u>https://ospe.on.ca/excess-soil-reports/</u>

Excess Soil Steering Committee

- Amarjit Sandhu, B.Sc: MHBC
- Ashlee Zelek:

Ontario Stone, Sand & Gravel Association (OSSGA)

• Charles Priddle, Ph.D:

Halton Region Conservation Authority (HRCA)

- Chi Hoang, Ph.D., P.Eng: MECP
- Grant Walsom, P. Eng, QP: XCG Consulting
- Ian McLaurin:

Ontario Soil Regulation Task Force (OSRTF)

• Jason Belleghem: MNRF

- Jim Walls, P.Geo, QP: RJ Burnside & Associates
- Karan Jandoo: MECP
- Kirsten Groody: Lafarge Holcim
- Krista Barfoot, Ph.D, QP_{RA}: Stantec
- Leslie Rich, MES, RPP: Conservation
 Ontario
- Nafiseh Pourhassani, P.Eng: MECP
- Thomas Guoth, P. Eng., QP: GHD

Project Scope

- 25,000,000 m³ of excess soil in Ontario
- 5000 active pits and quarries
- 8000 abandoned pits and quarries
- Excess Soil Regulation (O. Reg. 406/19) by the MECP
- Pits and quarries are excluded.
- Can we use MECP standards for pits and quarries?

Project Importance

Proper reuse of excess soil for rehabilitation of pits and quarries has many benefits:

- ✓Minimizing safety issues
- ✓ Eliminating aesthetic issues
- ✓ Less truck traffic
 - Less greenhouse gas emission
 - Less congestion
 - Less road deterioration

✓ Recreating/repairing wildlife habitats

6

Project Main Tasks

Mar- May 2020	Jun - Aug 2020	Aug - Nov 2020	Dec 2020 - Mar 2021
Forming the steering committee	Literature review (Jurisdictional overview) (Works in Ontario) (Peer-reviewed literature)	Developing the Scientific Report and BMP	Addressing committee's comments

Scientific Report

Scientific Report: Beneficial Reuse of Excess Soil at Aggregate Pits and Quarries

> S. Madeh Piryonesi, PhD David Carnegie, M.Sc., MBA, P.Eng. Lee Weissling, PhD

> > ONTARIO SOCIETY OF PROFESSIONAL ENGINEERS

Scientific Report (Overview)

• Literature Review

O Works Conducted in Ontario
 O Jurisdictional Overview

- Analysis of Options for Choosing Fill Quality Standards

 Conceptual Site Model for Pit and Quarry
 Options for Choosing Fill Quality Standards
 The BRAT
 - $_{\odot}$ Fate and Transport of Metals in Saturated Conditions
- Potential Adverse Impacts Not Considered by O. Reg. 406/19
 - $\ensuremath{\circ}$ Invasive species
 - \circ Microbiological contaminants

Scientific Report (Literature Review)

Literature Review: Jurisdictional Overview

Alberta

o A User Guide to Pit and Quarry Rehabilitation in Alberta

British Columbia

 Reclamation and Environmental Protection Handbook for Sand, Gravel and Quarry

Massachusetts

○ Interim Policy on the Re-Use of Soil for Large Reclamation Projects

• Minnesota

Minnesota Handbook for Reclamation of Gravel Pits

• New Jersey

Jurisdictional Overview (Patterns)

- A flexible framework for the assessment of soil quality rather than one table or one set of values
- Recognition for the issue of variability in background concentrations
- More current excess soil regulations and older BMPs for pit and quarry rehabilitation
- No independent conceptual site model for pits and quarries
- Some jurisdictions require pits and quarries to register and submit information, including a detailed soil management plan

Pit and Quarry Conceptual Model (Similarities with MECP Model)

4/22/21

Deviation from MECP Model

- Presence of SS-GW (saturated soil to groundwater) pathway
- The hydraulic conductivity of the aquifer is set to 3 x 10⁻⁵ m/s
- (The BRAT covers 10^{-3} to 10^{-5} m/s)
- Aquifer recharge rate = 0.28 m/a • Aquifer recharge rate may be different
- MECP standards are valid for a pH range of 5 to 9 and 5 to 11, respectively, for surface and subsurface soil

 Groundwater pH may be varied

Options for Choosing Soil Quality Standards

- MECP Background Conditions Table 1
- MECP Excess Soil Tables (Tables 2.1 to 9.1)

 \circ Tables 2.1 and 3.1

 $_{\odot}$ Tables 4.1 and 5.1 (stratified conditions)

 $_{\odot}$ Tables 6.1 and 7.1 (shallow soil)

• Tables 8.1 and 9.1 (near surface water body)

Shore Infilling Standards

4/22/21

BMP: Layer-Cake Approach

4/22/21

Potential Adverse Impacts Not Considered by Excess Soil Generic Standards

- Microbiological contaminants
- Invasive species
- Groundwater flow
- Noise and dust
- Soil erosion
- Climate change Mitigation
 Adaptation

Climate Change: Adaptation and Mitigation

Mitigation: It is today's concern

- A goal of *O. Reg. 406/19* is the reduction of greenhouse gas (GHG) emission
- The close-to-market and dispersed pit/quarry sites that provide the benefit of reduced haul distance

Adaptation: Current and future planning; a long-term phenomenon

- Increase in precipitation may cause more erosion and change in water level table
- Changes in balance of native and invasive species
- Melting permafrost in North Ontario

Best Management Practices (BMPs)

Best Management Practices for Aggregate Pit and Quarry

Rehabilitation in Ontario

S. Madeh Piryonesi, PhD

David Carnegie, M.Sc., MBA, P.Eng.

Lee Weissling, PhD

Ontario Society of Professional Engineers

Best Management Practices (Overview)

- Purpose and Application of the BMP Document
- Soil and Groundwater Quality Considerations

○ Soil quality

 \circ Groundwater quality

- BMPs for Site Control and Approving Soil at the Reuse Sites
- Non-Chemical Contaminants and Other Issues
- Consultation and Engagement
- Climate Change

Purpose and Application of the BMP Document

- The BMPs do not supersede the ARA (see Section 66) • Licenced sites may use the BMPs with MNRF approval
- The BMPs are developed based on O. Reg. 406/19 and associated rules
- MECP Excess Soil BMP (2016) was used in the development of the BMP document
- The BMPs recognize the benefits of using the BRAT or a risk assessment under certain circumstances

BMPs for Licenced and Unlicenced Sites

 Licenced sites are regulated under the Aggregate Resources Act (ARA)

 $_{\odot}$ Quality and quantity is determined by the site plan

Unlicenced sites are regulated by a municipality

 Legacy pits and quarries are an important category
 Should comply with municipal bylaws

Standards for Protecting Soil and Groundwater Quality

- Site end use (e.g., agricultural or residential)
- Groundwater potability
- Location with respect to closest surface water body
- Whether soil is placed in a shallow bedrock setting
- Whether the site is located in an environmentally sensitive area
- Other regulatory considerations: whether an RSC is required

Choosing the Appropriate Standards

25

4/22/21

Layer-Cake Approach: Setting 1

4/22/21

Layer-Cake Approach: Setting 2

Case Studies: Case 1, United Soil Management (USM) 9th Line

- Approved Fill Rate: 600 tri-axle trucks per day (approximately 6,000m3/day)
- Duration of Filling: approximately 25 years
- Fill Quality:
 - Table 2
- Groundwater: All filling above the water table
- Surface water: No surface water bodies
- Stratified site condition is met

Groundwater Monitoring

- Three lines of evidence
 - Soil standards
 - Leachate analysis
 - On-site groundwater monitoring using monitoring wells (if present)
- Unlicenced sites must comply with existing municipal bylaws regarding groundwater monitoring

BMPs for Approving Soil at the Reuse Site

- Information needed from the source site (according to Soil Rules):
 - $_{\odot}$ Assessment of past uses
 - ${\rm \circ}$ Sampling and analysis plan
 - ${\rm \odot}$ Soil characterization report
 - $_{\odot}$ Excess soil destination assessment report
- Application for shipment of fill material
 - $_{\odot}$ Shipment is only allowed upon approval of the reuse site
 - Application should include quality and quantity of soil and info required by Soil Rules as well as the BMP
 - $_{\odot}$ A list of hauling records (and/or bills of lading) should be kept at the reuse site

BMPs for Approving Soil at the Reuse Site

- Quality Control and Assurance
- Screening of incoming loads (e.g., visual, olfactory) by the responsible person
- Retaining the service of a QP is recommended
- Developing sampling plans by the QP for imported soil
 - MNRF Protocol (Table 1): Sample be collected for every 10,000 m³ of fill received
 - Soil Rules (Source site): Starts with a minimum of samples for less than 600 m³

Tracking and Operational Control at Reuse Site

- A locational tracking grid should be developed for the reuse site
- Unauthorized access locations should be prevented through signage, fencing and gates
- A Responsible Person should control authorized access, screen loads and check the hauling records
- Unmanifested loads should be rejected immediately
- After approving the load, it should be led to the appropriate location based on the locational tracking grid

Tracking and Operational Control at Reuse Site

- Maintaining records
- A daily record should be maintained for cumulative record of import, loads shipped to the reuse site, including rejected loads.
- Every entry of this record should include at a minimum:
 - \circ Date
 - \circ Daily total number of trucks entering the site
 - \circ Daily total number of trucks accepted and rejected (and the reason(s) for rejection)
 - $_{\odot}$ For each source site the following information should be recorded:
 - $_{\odot}$ ID number for each hauling record received on that date
 - $_{\odot}$ Cumulative volume of fill received
 - $_{\odot}$ Location fill was placed on the locational tracking grid
- Records should be retained by the project leader for seven years as prescribed by Section 28 of O. Reg. 406/19.

Discovery of Non-Conformant Material

- Notifying the MNRF or the governing municipality (for unlicenced sites) in writing
- Locating non-conformant material using the site log and locational tracking grid and stockpiling it for removal
- Keeping a record of the actions taken as well as any applicable documentation
- Providing a copy of supporting documentation to the governing municipality (for unlicenced sites) or the MNRF.

Non-Chemical Contaminants (Biological Contaminants)

- E. coli and other forms of coliform bacteria
- Proper site control measures (e.g. installing fence and gate)
- The source sites that have an increased risk of bacterial contaminants: farms, feedlots, rural areas with a history of livestock farming, sewage sludge (biosolids), and areas in the vicinity of sewer systems such as sewer pipes or septic tanks
- In areas with potable groundwater conditions, the soil should be screened for biological contaminants (e.g., soils containing biosolids) during the visual inspection

Invasive Species

- Some invasive species in Ontario are:
 - European fire ants,
 - o Russian olive,
 - \circ Phragmites,
 - \circ Giant hogweed
 - o Garlic mustard,
 - \odot Dog-strangling vine,
 - $_{\odot}$ Certain species of nematodes

• A list of parasitic or invasive species of nematodes and plants in Ontario is given in the BMP document

BMPs for Managing Invasive Species

- Soils with a history of invasive species, should be either avoided or sampled when imported.
- Sampling for nematodes in sites on agricultural land should be performed according to Ontario Ministry of Agriculture, Food and Rural Affairs guidelines.
- Identify any occurrences of invasive species before beginning any expansion of the operations.
- Report the identified invasive species to the MNRF.
- An annual invasive species assessment should be conducted.

Operational Issues: Erosion and Dust

- Keep the roadways inside and near the site free of loose material.
- Water should be regularly applied to unpaved roads as a dust suppressant.
- Outgoing trucks should pass through mud mats or a tire wash
- Paved roads should be washed during summer
- Limiting the height from which material is dropped and limiting operation when conditions are unfavourable (e.g., high winds).
- Planting vegetation or placing mulch on topsoil stockpiles or slopes
- In windy areas, stockpiles of production material should be kept small to reduce the risk of wind erosion

Operational Issues: Groundwater Turbidity and Flow

- Natural groundwater flow should not be disturbed:
 - Excavating or backfilling below the water table during seasonal low elevations (summer).
 - o Backfilling with free-draining granular material before the peak water table season.
- For turbidity check if:
- There have been previous turbidity issues during the extraction phase.
- The pit or quarry is in a highly permeable material that cannot attenuate the turbidity
- The pit or quarry is a legacy pit or quarry, and the hydrogeology of the site and surroundings is poorly characterized.

Operational Issues: Noise and Vibration

- Comply with local noise bylaws (For unlicenced sites)
- Limit work on weekends and evenings in an area with residential receptors
- Choose the quietest set of equipment
- Modification of equipment: e.g., standard engine exhaust mufflers can be replaced with more powerful models that offer additional silencing
- Skilled and well-trained drivers and operators who operate equipment to limit the generation of noise (e.g., by reducing tailgate slamming) can help.
- Roads leading to the site should be paved, regularly monitored and maintained

• Truck speed should be minimized when approaching the site

BMPs for Community Consultation and Engagement

- Community consultation and engagement is especially important for legacy pits and quarries.
- Indigenous communities must be considered
- Some methods for community engagement include:
 - $_{\odot}\,$ Door-to-door notices
 - $_{\odot}\,$ Community consultation meetings
 - Engaging local Business Improvement Areas (BIAs)
 - o Municipal council
 - $_{\odot}$ Social media
 - \circ Websites
 - o Hotlines
 - $\circ\,$ Meetings at physical offices

BMPs for Climate Change Mitigation

- Minimize generated excess soils at the source site by design and planning,
- The most climate-positive reuse is reusing the soil on the source site,
- Identify reuse sites that reduce the distance the soil travels,
- Choose routes and transport times of day that are the shortest
- Takes traffic and idling times into consideration,
- Control operational efficiency of the equipment on-site to reduce idle time, Revisit supply chain, and promote the use of local material and firms

Thank you